Rangachari, V.; Yue, M.; Wszolek, Z.; Ashe, K.; Knight, J.; Dickson, D.; et al. Accumulation of pathological tau species and memory loss in a conditional model of tauopathy. J. Neurosci. 2007, 27, 3650?662. 225. Sahara, N.; Maeda, S.; Murayama, M.; Suzuki, T.; Dohmae, N.; Yen, S.H.; Takashima, A. Assembly of two distinct dimers and higher-orderoligomers from full-length tau. Eur. J. Neurosci. 2007, 25, 3020?029. 226. Spires-Jones, T.L.; Stoothoff, W.H.; de Calignon, A.; Jones, P.B.; Hyman B.T. Tau pathophysiology in neurodegeneration: A tangled problem. Trends Neurosci. 2009, 32, 150?59. 227. Haase, C.; Stieler, J.T.; Arendt, T.; Holzer, M. Pseudophosphorylation of tau protein alters its capacity for self-aggregation. J. Neurochem. 2004, 88, 1509?520. 228. Cho, J.H.; Johnson, G.V. Primed phosphorylation of tau at Thr231 by glycogen synthase kinase 3beta (GSK3beta) plays a important role in regulating tau’s capacity to bind and stabilize microtubules. J. Neurochem. 2004, 88, 349?58. 229. Sun, Q.; Gamblin, T.C. Pseudohyperphosphorylation causing AD-like adjustments in tau has substantial effects on its polymerization. Biochemistry 2009, 48, 6002?011. 230. Min, S.W.; Cho, S.H.; Zhou, Y.; Schroeder, S.; Haroutunian, V.; Seeley, W.W.; Huang, E.J.; Shen, Y.; Masliah, E.; Mukherjee, C.; et al. Acetylation of tau inhibits its degradation and contributes to tauopathy.1205671-72-2 structure Neuron 2010, 67, 953?66.1301214-72-1 web Int. J. Mol. Sci. 2014,231. Irwin, D.J.; Cohen, T.J.; Grossman, M.; Arnold, S.E.; Xie, S.X.; Lee, V.M.; Trojanowski, J.Q. Acetylated tau, a novel pathological signature in Alzheimer’s illness along with other tauopathies. Brain 2012, 135, 807?18. 232. Alonso, A.D.; Grundke-Iqbal, I.; Barra, H.S.; Iqbal, K. Abnormal phosphorylation of tau and the mechanism of Alzheimer neurofibrillary degeneration: Sequestration of microtubule-associated proteins 1 and 2 plus the disassembly of microtubules by the abnormal tau. Proc. Natl. Acad. Sci. USA 1997, 94, 298?03. 233. Alonso, A.D.; Zaidi, T.; Novak, M.; Grundke-Iqbal, I.; Iqbal, K. Hyperphosphorylation induces self-assembly of tau into tangles of paired helical filaments/straight filaments. Proc. Natl. Acad. Sci. USA 2001, 98, 6923?928. 234. Duan, A.R.; Goodson, H.V. Taxol-stabilized microtubules promote the formation of filaments from unmodified full-length Tau in vitro. Mol. Biol. Cell 2012, 23, 4796?806, 235. Masliah, E.PMID:33684488 ; Iimoto, D.S.; Saitoh, T.; Hansen, L.A.; Terry, R.D. Elevated immunoreactivity of brain spectrin in Alzheimer illness: A marker for synapse loss? Brain Res. 1990, 531, 36?4. 236. Nelson, P.T.; Alafuzoff, I.; Bigio, E.H.; Bouras, C.; Braak, H.; Cairns, N.J.; Castellani, R.J.; Crain, B.J.; Davies, P.; del Tredici, K.; et al. Correlation of Alzheimer disease neuropathologic modifications with cognitive status: A evaluation on the literature. J. Neuropathol. Exp. Neurol. 2012, 71, 362?81. 237. Billingsley, M.L.; Kincaid, R.L. Regulated phosphorylation and dephosphorylation of tau protein: Effects on microtubule interaction, intracellular trafficking and neurodegeneration. Biochem. J. 1997, 323, 577?91. 238. Bunker, J.M.; Kamath, K.; Wilson, L.; Jordan, M.A.; Feinstein, S.C. FTDP-17 mutations compromise the capability of tau to regulate microtubule dynamics in cells. J. Biol. Chem. 2006, 281, 11856?1863. 239. D z-Nido, J.; Wandosell, F.; Avila, J. Glycosaminoglycans and beta-amyloid, prion and tau peptides in neurodegenerative ailments. Peptides 2002, 23, 1323?332. 240. Stokin, G.B.; Goldstein, L.S. Axonal transport and Alzheimer’.